Principal Components and Wavelet Transforms for Data Compression

Steve Hou
The Aerospace Corporation

Agenda

- Over view of data compression techniques
- Comparison of KLT/DCT and Wavelet/Subband
- Simulation results
- Future work
- Conclusion

Redundancy Reduction by Compression

Compression is to reduce the redundancy and convey the information with fewer bits by coding

- In current technology we can not completely separate true information from redundancy
- In lossy compression quantization causes loss of information and degradation of image quality

Popular Compression Techniques

- Block Transforms:
 - KLT (Karhunen Loeve Transform, Principal Components, Hotelling Transform)
 - DCT (Discrete Cosine Transform)
- Subband Filters:
 - Wavelet Transforms
 - M-Band Filter Banks
 - MLT (Modulated Lapped Transform)

KLT of A Two-Variable System

Suppose 2 adjacent pixels are statistically identical because they are highly correlated, then we only need to transmit the average of these two pixels, i. e.,

$$y_1 = (x_1 + x_2)/2$$
 major principal component

$$y_2 = (x_1 - x_2)/2 \sim 0$$
 minor principal component

Common Starting Point

The following 2x2 KLT (a 45 degree rotation)

$$y_1 = (x_1 + x_2)/2$$

$$y_2 = (x_1 - x_2)/2$$

is the same as

2nd order DCT

2nd order DFT

2nd order Hadamard Transform

2nd order Hartley Transform

Haar Wavelet Transform

Intrinsic Characteristics of KLT

- Uncorrelate component pairs within a block of input.
- If input are Gaussian, KLT gives the least distortion for a given bitrate among the known block transforms.
- Principal vectors need to be transmitted as overhead.
- Complex calculations are required in performing a KLT.
- For highly correlated components (in uniform area) KLT is indistinguishable from DCT.
- In the limiting case of large bitrate and large block size, KLT is equivalent to Fourier Transform for complex input.
- Optimal in distortion does not imply optimal in discrimination.

International Standards

- DCT used in current International Standards JPEG (Joint Photographic Experts Group) and MPEG (Motion Picture Experts Group).
- MLT used in current International Standard AC-3 (within MPEG-2) for high-quality digital audio compression.
- Biorthogonal Wavelet Transform proposed to be used in future International Standard JPEG 2000.

JPEG Compression Method

Maximally-Decimated Subband Filters

MLT Compression Method

	HL HL HL HL	1
		1
	HL HL HL HL	
	HL HL HL HL	
	нн нн нн н	н
	нн нн нн н	
		н

Characteristics of MLT

- Multiple resolution bands
- Parallel frequency channels
- Overlapped windowed DCT
- Alias of MLT:
 - MDCT (Modified DCT)
 - Cosine Modulated Filter Banks
 - Cosine Modulated Wavelet Transform
 - Local Cosine-Basis Wavelet Transform
 - Extended Lapped Transform
 - M-band Subband Filters

Blocking Effects Example

(Compression ratio is 10 to 1)

JPEG MLT

Terrain Categorization

Future Work

- Data compression of hyperspectral data
- Feature extraction in Wavelet Transformed domain
- Integration of lossless and lossy data compression
- Error resistance transmission of compressed data

Advantages of MLT/Wavelet Transform Data Compression Techniques

- Generally superior data/image quality
- Separates high-resolution parts of image from lowresolution regions
- Better control of data rate
- Can suppress sensor noise
- Potential exists for integrating lossless and lossy data compression techniques into one architecture
- Offers fast computation algorithm for KLT
- Compatible to future international standards
- State-of-the-art techniques for feature extraction